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Abstract
Due to limited capital and limited information from stock market, some individual 
investors prefer to construct a portfolio of funds instead of stocks. But, there will 
be management fees paid to the fund managers during the investment, which are in 
general proportional to the net asset value of the funds. Motivated by this phenom-
ena, this paper considers multi-period mean–variance portfolio optimization prob-
lem with proportional management fees. Using stochastic dynamic programming, 
we derive the semi-analytical optimal portfolio policy. Our result helps clarify the 
benefit and cost of adopting such dynamic portfolio policy with management fees.

Keywords  Dynamic mean–variance portfolio selection · Management fee · Dynamic 
programming

1  Introduction

Markowitz (1952)’s seminar work on mean–variance (MV) portfolio selection the-
ory laid the foundation of modern investment theory. This classical model has been 
widely adopted in both theoretical study and financial practice. As two of the most 
important extensions of the traditional (static) MV model, Li and Ng (2000), Zhou 
and Li (2000) derived the analytical dynamic portfolio policies for the discrete-time 
and continuous-time models, respectively. Following these works, the multi-period 
MV portfolio policies under different constraints and market parameter settings 
are derived, e.g., Zhu et al. (2004), Çakmak and Özekici (2006), Costa and Araujo 
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(2008), Cvitanić et al. (2008), Chiu and Zhou (2011), Cui et al. (2012), Cui et al. 
(2014), Cui et  al. (2017), Keykhaei (218). Besides these multi-period MV portfo-
lio policies, there are also dynamic portfolio policies involving other features, such 
as views at multiple horizons (Meucci and Nicolosi 2016), linear rebalancing rules 
(Moallemi and Saǧlam 2015), multiple criteria (Pendaraki and Zopounidis 2003, 
Xidonas et al. 2009, Yu and Lee 2011), investor attitudes and biases (Momen et al. 
2017).

In portfolio management practice, some individual investors prefer to construct 
the portfolios with different funds instead of stocks, due to limited capital and lim-
ited information from stock market. If the investor believes that the professional 
fund managers can do better by taking advantage of the predicting power in the 
stock market, he would like to construct his portfolio of different funds. However, 
when investing in fund, there will be management fees paid to the fund managers. 
In general, the management fees are proportional to the net asset value of the funds. 
Comparing to the rich literature in dynamic portfolio selection, there are few papers 
considering management fees. Brown et al. (2004) studied the importance of man-
agement fees, Dokuchaev (2010) analyzed the myopic strategies, Gao et al. (2015) 
considered only the setup type of management fee.

In this work, we focus on the multi-period MV portfolio selection problem with 
the common proportional type of management fees. The problem can be reformu-
lated as a particular multi-period MV portfolio selection problem with no-short-
ing constraint. By using the technique proposed in Cui et  al. (2014), we derived 
the semi-analytical optimal portfolio policy for this problem under general model 
of fund returns. We show that the revealed portfolio policy is a linear threshold-
type policy, which is significantly different from the traditional linear MV portfolio 
policy. Our results may also help the investor to understand the benefit and cost of 
adopting dynamic portfolio policy with management fees.

A related subject in the literature is the optimal investment and consumption 
problem with transaction costs. Transaction costs are charged when there is a hold-
ing position change in risky stocks, while the management fee is charged when the 
fund is being held. In the language of math, if transaction costs are involved in a 
dynamic portfolio selection problem, the investor needs to keep track of portfolio 
positions across periods. But, if management fees are involved, only the current 
wealth level is needed to be known. In the literature, there are many studies on port-
folio selection problem with transaction costs in continuous-time and discrete-time 
settings, e.g., Dai et  al. (2010), Liu (2004), Bertsimas and Pachamanova (2008), 
Lynch and Tan (2010), Yu and Lee (2011), Garleanu and Pedersen (2013). Another 
less related field is the delegated portfolio management problem, which focuses on 
the incentives and risk sharing between principal and agent (e.g., Laffont and Mar-
timort 2002; Ou-Yang 2003; Li and Tiwari 2009; Sato 2016). Readers may refer to 
Stracca (2006) for a review for this field.

The remaining of this paper is organized as follows. In Sect. 2, the multi-period 
mean–variance formulation with proportional management fees is presented. In 
Sect. 3, we derive the semi-analytical portfolio policy for the problem. In Sect. 4, 
we provide an illustrative example to study the properties of the optimal policy. We 
conclude the paper in Sect. 5.
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2 � Problem formulation

Through out the paper, we use the following notations. We use A ≻ 0 to denote a 
positive definite matrix A and �′ to denote the transpose of vector � . Let � be the 
indicator function such that � = 1 if event  held and � = 0 , otherwise.

There are n different risky funds and one riskless bank account in the market, 
all of which evolve within a time horizon of T periods. An individual investor with 
an initial wealth x0 joins the market at time 0 and allocates his wealth among the 
n risky funds and one riskless bank account at the beginning of each of the fol-
lowing T consecutive time periods. We denote the total return of the riskless bank 
account as a deterministic number st , t = 0,… , T − 1 (i.e., the ratio of the value 
of the bank account at time t + 1 to the value of the bank account at time t), for 
simplicity, although there is no technical difficulty to extend it to the random case. 
The random total return vector of the n risky funds in the t-th time period are 
denoted as �t = (e1

t
,… , en

t
)� (i.e., the ratio of the value of the risky funds at time 

t + 1 to the value of the risky funds at time t), which is square integrable. In our 
study, we assume total return vectors in different time periods, {�t}|T−1t=0

 , to be sta-
tistically independent.1 All the random vectors are defined on a filtered probability 
space (�, , {t},ℙ) . The information set at the beginning of the t-th time period 
is denoted as t = �(�0, �1,… , �t−1) and 0 is the trivial �-algebra over � . We use 
the notations Et[⋅] , Covt[⋅] and Vart[⋅] to denote the conditional expectation E[⋅|t] , 
the conditional covariance matrix Cov[⋅|t] and the conditional variance Var[⋅|t] , 
respectively. At time t = 0 , the unconditional expectation and variance are denoted 
as E[⋅] = E[⋅|0] and Var[⋅] = Var[⋅|0] , respectively. We assume that the covari-
ance matrices Cov[�t] , t = 0,… , T − 1 , are all positive definite.

Let xt be the investor’s wealth level at the beginning of the t-th time period, ui
t
≥ 0 

( i = 1, 2,… , n ), be the amount of money in the long position of the i-th risky fund 
at the beginning of the t-th time period, and �i

t
≥ 0 ( i = 1, 2,… , n ), be the amount 

of money in the short position of the i-th risky fund at the beginning of the t-th time 
period. In practice, some brokers do allow their fund investors to sell the funds short, 
such as Jack White & Company, a discount brokerage based in San Diego, and Fidel-
ity Investments in Boston (see Gould 1992). But there is much stricter margin require-
ment than selling stocks short. Thus, we allow the investor to sell the funds short by 
introducing the variables �i

t
 in our setting. The proportional management fee of the i-th 

risky fund in the t-th time period is charged according to ci
t
ui
t
+ di

t
�i
t
 , where ci

t
 and di

t
 

are two known positive constants representing the management fee rate. In general, the 
management fee of shorting a fund is much larger than the one of longing a fund, i.e., 
di
t
> ci

t
.

Compared with taking a net position ui
t
− �i

t
 in fund i, taking both long position 

ui
t
> 0 and short position 𝜈i

t
> 0 in fund i can only generate an additional loss due 

to larger management fee. Thus, for most readers, it is reasonable to assume that 
the investor only takes either long position or short position in a fund, i.e., ui

t
�i
t
= 0 . 

However, in the multi-period mean–variance framework, such irrational investment 

1  The main results in this paper can be readily extended to the case of correlated return vectors by adopt-
ing the technique proposed in Gao et al. (2015).
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behavior, which causes wealth reduction, may generate better mean and variance 
pair of the terminal wealth. To reveal such interesting irrational phenomena, we 
assume that the investor is allowed to take both long position and short position 
in the same risky fund simultaneously in our model setting (i.e., both ui

t
 and �i

t
 take 

positive numbers at the same time).2 In Proposition 2, we show that when the wealth 
level is smaller than some threshold, the investor only takes either long position 
or short position. When the wealth level is larger than the threshold, the investor 
takes equal long position and short position in order to reduce the wealth and finally 
decrease the variance of the terminal wealth.

Let �t =
(
u1
t
,… , un

t

)� and �t =
(
�1
t
,… , �n

t

)� . An investor is seeking the best t

-adapted portfolio policy, {�∗
t
, �∗

t
}|T−1

t=0
 , such that the variance of the terminal wealth, 

Var[xT ] , is minimized while the expected terminal wealth, E[xT ] , is guaranteed at a 
given level b, with b ≥ x0

∏T−1

t=0
st,

where �t =
(
P1
t
,P2

t
,… ,Pn

t

)�
=
(
(e1

t
− st), (e

2
t
− st),… , (en

t
− st)

)� is the vector of 
excess rates of return, �t = (c1

t
, c2

t
,… , cn

t
)� and �t = (d1

t
, d2

t
,… , dn

t
)� are the vectors of 

management fee rates, and �n denotes the n-dimensional zero vector. Except for the 
management fees, problem ((b)) is just the multi-period mean–variance portfolio 
selection problem. Readers may refer to Zhang et al. (2018) for review of mean–var-
iance framework. Please note that the management fees are calculated and deducted 
at the beginning of each period. Furthermore, we assume that the market does not 
have arbitrage opportunity.

Once the wealth level at time t is negative, i.e., xt < 0 , the investor goes bank-
rupt. Thus, the constraint xt ≥ 0 (or P(xt < 0) ≤ 𝛼 ) is often added into the portfo-
lio selection model, which is called no bankruptcy constraint (see Bielecki et  al. 
2005; Zhu et  al. 2004). In continuous-time setting, the investment policy can 
change quickly during a very short time interval and the constraint xt ≥ 0 can be 
easily fulfilled. Thus, Bielecki et  al. (2005) directly handled the constraint xt ≥ 0 . 
However, in multi-period setting, the investment policy can only change at several 
time instants and adding the constraint xt ≥ 0 may cause the feasible set empty. For 
example, we assume �t has a normal distribution and b >

∏T−1

t=0
stx0 . Then, to ensure 

xt+1 ≥ 0 for all possible realisations of �t , we need (�t − �t) = � , which causes 
E [xT ] =

∏T−1

t=0
stx0 < b . There is no feasible policy for problem ((b)) . Based on 

(1)

((b)) ∶ min Var[xT ] ≜ E
[
(xT − b)2

]
,

s.t. E[xT ] = b,

xt+1 = st(xt − �
�
t
�t − �

�
t
�t) + �

�
t
(�t − �t),

�t ≥ �n, �t ≥ �n, t = 0, 1,… , T − 1,

2  Based on the proofs of Proposition 1 and Theorem 2, the key requirement of applying our technique is 
that the admissible set of the control variables is a cone. {(ui

t
, �i

t
)|ui

t
≥ 0, �i

t
≥ 0, ui

t
�i
t
= 0} is still a cone. 

Thus, our technique is also applicable to the setting that the investor can only take either long position or 
short position on a fund.
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this finding, Zhu et al. (2004) used the constraint P(xt < 0) ≤ 𝛼 to replace the con-
straint xt ≥ 0 . In this paper, we do not consider the no bankruptcy constraint.3

If we define

problem ((b)) can be reformulated as follows,

It is a particular multi-period mean–variance portfolio selection problem under no-
shorting constraint. The technique proposed in Cui et al. (2014) can be applied to 
this reformulation. However, we still need to investigate the problem carefully due to 
the particular structure of �̂t.

Assumption 1  (Non-empty feasible set assumption) There exists an t-adapted 
portfolio policy such that the conditions (1) in problem ((b)) are satisfied. In other 
words, the feasible set of problem ((b)) is non-empty.

Remark 1  We can find two sufficient market conditions under which the feasible set 
of problem ((b)) is non-empty. The first one is that E[Pi

t
] > stc

i
t
 holds for some 

risky fund i during certain period t. Then, the portfolio policy satisfying

�i
t
= 0 , ujt = �

j

t = 0 ( j ≠ i ) and �s = �s = �n ( s ≠ t ) is a feasible portfolio policy. The 
second one is that E[−Pi

t
] > std

i
t
 holds for some risky fund i during certain period t. 

Then, the portfolio policy satisfying

ui
t
= 0 , ujt = �

j

t = 0 ( j ≠ i ) and �s = �s = �n ( s ≠ t ) is a feasible portfolio policy. The 
financial meaning of these two sufficient conditions is that after deducting the man-
agement fees, taking the long position (or the short position) in risky fund i may still 
earn positive expected excess return.

�̂t ≜

(
�t − st�t
−�t − st�t

)
, �̂t ≜

(
�t

�t

)
,

min E
[
(xT − b)2

]
,

s.t. E[xT ] = b,

xt+1 = stxt + �̂
�
t
�̂t,

�̂t ≥ �2n, t = 0, 1,… , T − 1.

ui
t
=

(
b − x0

T−1∏
t=0

st

)
T−1∏
�=t+1

s−1
�
(E[Pi

t
] − stc

i
t
)−1 > 0,

𝜈i
t
=

(
b − x0

T−1∏
t=0

st

)
T−1∏
�=t+1

s−1
�
(E[−Pi

t
] − std

i
t
)−1 > 0,

3  As the no bankruptcy constraint is a state constraint, our technique is not applicable to such constraint.
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Before presenting the main result, we need the following facts. Since Cov
[
�t

]
≻ 0 , 

we have E[�t��t] = Cov
[
�t

]
+ E[�t]E[�

�
t
] ≻ 0 . Then, by applying Sherman–Morrison 

Formula, we further have

which implies 1 − E[��
t
]E−1[�t�

�
t
]E[�t] > 0 . Combining E[�t��t] ≻ 0 and

we can show that

holds with the help of Schur complement condition for positive definiteness. Then, 
we have

where −�n is n-dimensional vector of all negative one and In is n-dimensional iden-
tity matrix. Applying Schur complement condition for positive definiteness again, 
we have

3 � Optimal portfolio policy with management fees

In the literature, the multi-period mean–variance portfolio policy is derived by the 
embedding method introduced by Li and Ng (2000), which is also equivalent to the 
Lagrangian duality method. In the following part, we generalize such method for 
problem ((b)) by introducing Lagrangian multiplier 2� for constraint (1),

The following Theorem shows that the strong duality relationship holds for ((b)) 
and ((�)).

Theorem 1  The strong duality relationship holds for problems ((b)) and ((�)) , 
i.e.,

E[��
t
]
(
E[�t�

�
t
] − E[�t]E[�

�
t
]
)−1

E[�t] =
E[��

t
]E−1[�t�

�
t
]E[�t]

1 − E[��t]E
−1[�t�

�
t]E[�t]

> 0,

s2
t
− s2

t
E[��

t
]E−1[�t�

�
t
]E[�t] > 0,

(
s2
t

stE[�
�
t
]

stE[�t] E[�t�
�
t
]

)
≻ 0,

(
s2
t

stE[�
�
t
]

stE[�t] E[�t�
�
t
]

)
=

(
1 ��

n

−�n In

)(
s2
t

stE[�
�
t
]

stE[�t] E[�t�
�
t
]

)(
1 − ��

n

�n In

)
≻ 0,

E[�t�
�
t
] ≻ 0, t = 0, 1,… , T − 1,

s2
t
(1 − E[��

t
]E−1[�t�

�
t
]E[�t]) > 0, t = 0, 1,… , T − 1.

((�)) ∶ min E
[
(xT − b)2 + 2�(xT − b)

]
,

s.t. {xt,�t, �t} satisfy (2), (3).

(2)v((b)) = max
�∈ℝ

v((�)),
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where v((b)) and v((�)) denote the optimal objective values of problems ((b)) 
and ((�)) , respectively.

Proof  Let �p = {�
p

t , �
p

t }|T−1t=0
 and �l = {�l

t
, �l

t
}|T−1

t=0
 be the optimal policies of prob-

lems ((b)) and ((�)) , respectively. The weak duality relationship always holds, 
i.e., for any � , we have v((�)) ≤ v((b)) , since �p is always a feasible policy of 
problem ((�)) and E[xT − b] = 0 under policy �p.

We then focus on the other direction. For any portfolio policy, � ≜ {�t, �t}|T−1t=0
 , 

due to the dynamic in (1), we have

We then define the following functionals with respect to � ,  (�) = E[xT ] − b and 
(�) = Var[xT ] = E[(xT − b)2] . We can define the following set

We first show that set  is convex and not empty in ℝ2 . Suppose that 
(𝜂̂, 𝜌̂) ∈  and (𝜂̄, 𝜌̄) ∈  , i.e., there exists 𝜋̂ = {�̂t, �̂t}|T−1t=0

 and 𝜋̄ = {�̄t, �̄t}|T−1t=0
 

such that  (𝜋̂) = 𝜂̂ , (𝜋̂) ≤ 𝜌̂ and  (𝜋̄) = 𝜂̄ , (𝜋̄) ≤ 𝜌̄ . Let 𝜂̌ = 𝛼𝜂̂ + (1 − 𝛼)𝜂̄ 
and 𝜌̌ = 𝛼𝜌̂ + (1 − 𝛼)𝜌̄ for any � ∈ [0, 1] . We now prove that (𝜂̌, 𝜌̌) ∈  . Let 
𝜋̌ = 𝛼𝜋̂ + (1 − 𝛼)𝜋̄ . Then, from (3), it has

Let x̂T , x̄T and x̌T be the resulting terminal wealth levels of policies 𝜋̂ , 𝜋̄ and 𝜋̌ , 
respectively. By using (1) and (3), we have

Thus, we have found the policy 𝜋̌ such that  (𝜋̌) = 𝜂̌ , (𝜋̌) ≤ 𝜌̌ , which further 
implies (𝜂̌, 𝜌̌) ∈  and  is convex. The non-empty property of  is from the Non-
empty feasible set assumption.

Now, we consider another set  ≜ {(0, s) ∈ ℝ
2 | s < v((b))} , which is a convex 

set. Note that 
⋂

 = � . We prove it by contradiction. Suppose (�, �) ∈ 
⋂

 . 
Since (�, �) ∈  , we have � = 0 and 𝜌 < v((b)) . On the other hand, (0, �) ∈  . There 
exists �∗ such that  (�∗) = 0 , (𝜋∗) ≤ 𝜌 < v((b)) , which contradicts the optimal-
ity of v((b)) . By using the separating hyperplane theorem of two convex sets [see 

(3)xT =

T−1∏
t=0

stx0 +

T−1∑
t=0

T−1∏
�=t+1

s�
[
�
�
t
(�t − �t) − st�

�
t
�t − st�

�
t
�t

]
.

 ≜
{
(�, �) ∈ ℝ

2 |∃�, satisfies (�) = �, (�) ≤ � and conditions (2), (3)
}
.

 (𝜋̌) =

T−1∏
t=0

stx0 − b +

T−1∑
t=0

T−1∏
𝜏=t+1

s𝜏E
[
�
�
t
(𝛼�̂t + (1 − 𝛼)�̄t − 𝛼�̂t − (1 − 𝛼)�̄t)

−st�
�
t
(𝛼�̂t + (1 − 𝛼)�̄t) − st�

�
t
(𝛼�̂t + (1 − 𝛼)�̄t)

]

= 𝛼𝜂̂ + (1 − 𝛼)𝜂̄ = 𝜂̌.

(𝜋̌) = E[(𝛼x̂T + (1 − 𝛼)x̄T − b)2] = E
[(
𝛼(x̂T − b) + (1 − 𝛼)(x̄T − b)

)2]

≤ 𝛼E[(x̂T − b)2] + (1 − 𝛼)E[(x̄ − b)2]

= 𝛼(𝜋̂) + (1 − 𝛼)(𝜋̄) ≤ 𝜌̌.



www.manaraa.com

	 X. Cui et al.

1 3

Theorem 11.3 on Page 93 in Rockafellar (1970)], we can find (𝜇̄, 𝜉) ≠ (0, 0) and � such 
that

We can observe that � ≥ 0 , otherwise 𝜇̄z + 𝜉y can be −∞ for (z, y) ∈  , 
which contradicts (4). For the case � ≠ 0 , we can define 𝜇 = 𝜇̄∕𝜉 , which 
gives �z + y ≥ �∕� for all (z, y) ∈  and �z + y ≤ �∕� for all (z, y) ∈  . 
Thus, from the definition of  and these two inequalities, for any � , we have 
E[(xT − b)2] + �(E[xT ] − b) ≥ �∕� ≥ v((b)) . Maximizing the left hand side of this 
inequality with respect to � , gives max� v((�)) ≥ v((b)) . Combining with the 
weak duality v((�)) ≤ v((b)) , we have v((�)) = v((b)) . When � = 0 , it is not 
hard to see this relationship still holds. 	�  ◻

From Theorem 1, we can characterize the portfolio policy of problem ((b)) by 
solving problem ((�)) . Note that problem ((�)) is equivalent to the following 
formulation by variable substitution,

where �2n denotes the 2n-dimensional zero vector, yt ≜ xt − �−1
t
(b − �) , 

�t ≜
∏T−1

�=t
s
�
 (with 

∏T−1

�=T
s
�
 setting to 1), and

We use v((�)) to denote the optimal objective value of problem ((�)) . It is easy 
to check that v((�)) = v((�)) + �2.

Proposition 1  The optimal portfolio policy of ((�)) at time t is a piecewise linear 
policy given by

where

(4)𝜇̄z + 𝜉y ≥ 𝜁 for all (z, y) ∈  and 𝜇̄z + 𝜉y ≤ 𝜁 for all (z, y) ∈ .

((𝜇)) ∶ min E
[
y2
T

]
,

s.t. yt+1 = styt + �̂
�
t
�̂t,

�̂t ≥ �2n, t = 0, 1,… , T − 1,

y0 = x0 − 𝜌−1
0
(b − 𝜇),

�̂t ≜

(
�t − st�t
−�t − st�t

)
, �̂t ≜

(
�t

�t

)
.

�̂
∗
t
= st�

+
t
yt�{yt≥0} − st�

−
t
yt�{yt<0},

(5)
�

−
t
= argmin

�t≥�2n

E
[
Ct+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t<1}
+ Dt+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t≥1}

]
,

(6)

�
+
t
= argmin

�t≥�2n

E
[
Ct+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t<−1}
+ Dt+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t≥−1}

]
,

Ct = E
[
Ct+1(1 − �̂

�
t
�

−
t
)2�{�̂�

t�
−
t <1}

+ Dt+1(1 − �̂
�
t
�

−
t
)2�{�̂�

t�
−
t ≥1}

]
,

Dt = E
[
Ct+1(1 + �̂

�
t
�

+
t
)2�{�̂�

t�
+
t <−1}

+ Dt+1(1 + �̂
�
t
�

+
t
)2�{�̂�

t�
+
t ≥−1}

]
,
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with terminal condition CT = DT = 1 . Moreover, the value function of ((�)) at time 
t is given by

where 0 ≤ Ct ≤ 1 and 0 ≤ Dt ≤ 1 for t = 0,… , T − 1.

Proof  We mainly use the dynamic programming and mathematical induction 
method to prove this result. Define the value function of ((�)) at time t as

with the terminal condition, JT (yT ) = y2
T
 . The statement (7) is true for time T, by 

setting CT = DT = 1 in (7). Assume that statement (7) is true for time t + 1 with 
0 ≤ Ct+1 ≤ 1 and 0 ≤ Dt+1 ≤ 1 . We now prove that the statement is also true for time 
t with 0 ≤ Ct ≤ 1 and 0 ≤ Dt ≤ 1 . From the principle of optimality, the value func-
tion Jt(yt) satisfies the recursion,

where

Note that the expectation is taken with respect to �̂t . It is not hard to see that the 
functional gt(�̂t, yt) is convex with respect to �̂t.

Now, we consider three cases. (i) When yt < 0 , identifying optimal �̂t within the 
convex cone �̂t ≥ �2n is equivalent to identifying optimal �t within the convex cone 
�t ≥ �2n when we set �̂t = −st�tyt . In general, �t is yt-dependent. We thus have

where

(7)Jt(yt) = Dt𝜌
2
t
y2
t
�{yt≥0}

+ Ct𝜌
2
t
y2
t
�{yt<0}

,

Jt(yt) ≜ min
�̂t≥�2n,…,�̂T−1≥�2n

E
[
y2
T
|| yt

]

(8)
Jt(yt) = min

�̂t≥�2n
E
[
Ct+1𝜌

2
t+1

y2
t+1

�{yt+1<0}
+ Dt+1𝜌

2
t+1

y2
t+1

�{yt+1≥0}
|yt

]

= min
�̂t≥�2n

𝜌2
t+1

gt(�̂t, yt),

gt(�̂t, yt)

≜ E
[
Ct+1(styt + �̂

�
t
�̂t)

2
�{�̂�

t �̂t<−styt}
+ Dt+1(styt + �̂

�
t
�̂t)

2
�{�̂�

t �̂t≥−styt}

]
.

Jt(yt) = min
�̂t≥�2n

𝜌2
t+1

gt(�̂t, yt) = min
�t≥�2n

𝜌2
t
y2
t
h−
t
(�t),

(9)h−
t
(�t) ≜ E

[
Ct+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t<1}
+ Dt+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t≥1}

]
.
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Noticing the form of h−
t
(�t) , it is easy to see that the minimizer of h−

t
(�t) , �−

t
 , does 

not depend on the state variable yt . Substituting �̂∗
t
= −styt�

−
t
 back to the value 

function (8) leads to Jt(yt) = Ct�
2
t
y2
t
.

We further prove 0 ≤ Ct ≤ 1 . It is easy to see that Ct is the expectation of 
a piecewise quadratic function of �̂t . Based on its expression, the fact that 
0 ≤ Ct+1 ≤ 1 , 0 ≤ Dt+1 ≤ 1 implies Ct ≥ 0 . Then, we prove Ct ≤ 1 by show-
ing Ct ≤ Ct+1 . To do this, we need to invoke Lagrangian duality theory to derive 
�−

t
 . Define the Lagrangian function by introducing the multiplier vector �t ≥ �2n , 

Lt(�t,�t) = h−
t
(�t) − �

�
t
�t . The optimal �−

t
 can be expressed by

where the optimal multiplier vector �∗
t
 is given by

The optimizer defined in (10), �−
t
 , satisfies the first order optimality condition,

Define

Consider the open spherical neighbourhood of �−
t
 , {�t| ||�t −�−

t
||2 < 𝜖} for some 

𝜖 > 0 , where || ⋅ ||2 denotes the Euclidean norm of a vector. It is easy to check that 
in the spherical neighbourhood of �−

t
 , f (�̂t,�t) is a Lebesgue-integrable function of 

�̂t and

(10)�
−
t
= argmin

�t∈ℝ
2n

Lt(�t,�
∗
t
),

�
∗
t
= argmax

�t≥�2n

{
min

�t∈ℝ
2n
Lt(�t,�t)

}
.

dh−
t
(�t)

d�t

|||�t=�
−
t

− �
∗
t
= �2n.

f (�̂t,�t) ≜ Ct+1(1 − �̂
�
t
�t)

2
�{�̂�

t�t<1}
+ Dt+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t≥1}
.

|||
𝜕f (�̂t,�t)

𝜕Ki
t

|||
= 2||Ct+1(P̂

i
t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t<1}
+ Dt+1(P̂

i
t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t≥1}
||

≤ 2||Ct+1(P̂
i
t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t<1}
|| + ||Dt+1(P̂

i
t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t≥1}
||

≤ 2||(P̂i
t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t<1}
|| + ||(P̂i

t
�̂
�
t
�t − P̂i

t
)�{�̂�

t�t≥1}
||

= 2||P̂i
t
�̂
�
t
�t − P̂i

t
||

≤ 2|P̂i
t
| ⋅ (|�̂�

t
�t| + 1)

≤ 2|P̂i
t
| ⋅ (||�̂t||2 ⋅ (||�−

t
||2 + 𝜖) + 1)

≜ 𝜃i(�̂t), i = 1,… , n,
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where | ⋅ | denotes the operator of taking absolute value, P̂i
t
 and Ki

t
 are the i-th com-

ponents of vectors �̂t and �t , respectively. Then, || 𝜕f (�̂t ,�t)

𝜕Ki
t

|| is bounded by an integra-
ble function 𝜃i(�̂t) . Lebesgue Dominated Convergence Theorem ensures that the dif-
ferentiation and the expectation are interchangeable at �t = �−

t
 , i.e.,

Then we further have

where the first order optimality condition given in (11) is used to derive the third 
equality, the complementary slackness condition (�∗

t
)��−

t
= 0 is used to drive the 

fourth equality, 0 ≤ Dt+1 ≤ 1 is used to derive the first inequality, 0 ≤ Ct+1 ≤ 1 and 
E[�{�̂�

t�
−
t <1}

] ≤ 1 are used to drive the second inequality. We can further see that 
Ct = Ct+1 if and only if �−

t
= �2n.

(ii) We then consider the case of yt > 0 . Similarly, identifying optimal �̂t ≥ �2n is 
equivalent to identifying optimal �t within the convex cone �t ≥ �2n when we set 
�̂t = st�tyt . In general, �t is yt-dependent. We thus have

(11)

dh−
t
(�t)

d�t

|||�t=�
−
t

− �
∗
t

= E

[
𝜕f (�̂t,�t)

𝜕�t

|||�t=�
−
t

]
− �

∗
t

= 2E
[
Ct+1(�̂t�̂

�
t
�

−
t
− �̂t)�{�̂�

t�
−
t <1}

+ Dt+1(�̂t�̂
�
t
�

−
t
− �̂t)�{�̂�

t�
−
t ≥1}

]
− �

∗
t

= �2n.

Ct = E
[
Ct+1(1 − 2�̂�

t
�

−
t
+ (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

+Dt+1(1 − 2�̂�
t
�

−
t
+ (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t ≥1}

]

= E
[
Ct+1(1 − (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

+ Dt+1(1 − (�−
t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t ≥1}

]

+ 2(�−
t
)�E

[
Ct+1(�̂t�̂

�
t
�

−
t
− �̂t)�{�̂�

t�
−
t <1}

+ Dt+1(�̂t�̂
�
t
�

−
t
− �̂t)�{�̂�

t�
−
t ≥1}

]

= E
[
Ct+1(1 − (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

+ Dt+1(1 − (�−
t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t ≥1}

]

+ (�−
t
)��∗

t

= E
[
Ct+1(1 − (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

+ Dt+1(1 − (�−
t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t ≥1}

]

≤ Ct+1E
[
(1 − (�−

t
)��̂t�̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

]

= Ct+1E
[
�{�̂�

t�
−
t <1}

] − Ct+1E[(�
−
t
)��̂t�̂

�
t
�

−
t
�{�̂�

t�
−
t <1}

]

≤ Ct+1,
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where

Noticing the form of h+
t
(�t) , it is easy to see that the minimizer of h+

t
(�t) , �+

t
 , does 

not depend on the state variable yt . Substituting �̂∗
t
= styt�

+
t
 back to the value func-

tion (8) leads to Jt(yt) = Dt�
2
t
y2
t
 . We can also show that 0 ≤ Dt ≤ 1 by using the sim-

ilar argument for Ct . Furthermore, we have that Dt = Dt+1 if and only if �+
t
= �2n.

(iii) When yt = 0 , we can easily verify that �̂∗
t
= �2n is the minimizer of gt(�̂t, 0) , 

which completes the proof of the Theorem. 	�  ◻

The parameters Ct and Dt are the coefficients of the cost-to-go functions of 
problem ((�)) . Furthermore, by using Theorem 1 and Proposition 1, we achieve 
the semi-analytical optimal policy of problem ((b)).

Theorem 2  When C0 = 1 , the optimal portfolio policy of problem ((b)) is

When C0 < 1 , the optimal portfolio policy of problem ((b)) is expressed by

where �∗ =
C0(b−�0x0)

C0−1
 . Moreover, the mean–variance efficient frontier is

Proof  From Proposition 1, we know that the optimal objective value of problem 
((�)) is

where � = b − � . As v((�)) = v((�)) + �2 , we have

Jt(yt) = min
�̂t≥�2n

𝜌2
t+1

gt(�̂t, yt) = min
�t≥�2n

𝜌2
t
y2
t
h+
t
(�t),

(12)h+
t
(�t) ≜ E[Ct+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t<−1}
+ Dt+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t≥−1}
].

�
∗
t
= �n, �

∗
t
= �n.

(13)

(
�∗
t

�∗
t

)
= st�

+
t

(
xt − 𝜌−1

t
(b − 𝜇∗)

)
�{xt≥𝜌

−1
t (b−𝜇∗)}

− st�
−
t

(
xt − 𝜌−1

t
(b − 𝜇∗)

)
�{xt<𝜌

−1
t (b−𝜇∗)},

(14)Var[xT ] =
C0

(
E[xT ] − �0x0

)2
1 − C0

, for E[xT ] ≥ �0x0.

(15)v((𝜇)) = C0(𝛾 − 𝜌0x0)
2
�{𝛾>𝜌0x0}

+ D0(𝛾 − 𝜌0x0)
2
�{𝛾≤𝜌0x0}

,

v((𝜇)) = C0(𝛾 − 𝜌0x0)
2
�{𝛾>𝜌0x0}

+ D0(𝛾 − 𝜌0x0)
2
�{𝛾≤𝜌0x0}

− 𝜇2.
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Theorem 1 implies that optimal � can be found by solving the following problem,

Please note that b ≥ x0
∏T−1

t=0
st = �0x0.

When C0 = 1 , we have �∗ = −∞ and �−
t
= �2n . Then, the investor starts from the 

domain x0 < 𝜌−1
0
(b − 𝜇∗) and takes �∗

0
= �n , �∗

0
= �n as the portfolio policy at time 0. 

When comes to time 1, the investor remains in that domain x1 = s0x0 < 𝜌−1
1
(b − 𝜇∗) 

and also takes �∗
1
= �n , �∗

1
= �n as the portfolio policy at time 1. Applying similar 

arguments to the terminal time, we can see that the investor takes �∗
t
= �n , �∗

t
= �n 

as the portfolio policy for all time periods. Thus, C0 = 1 is a degenerate case.
When C0 < 1 , it is not hard to identify the optimal �∗ as �∗ =

C0(b−�0x0)

C0−1
≤ 0 . Sub-

stituting �∗ to the expression of Var[xT ] gives the efficient frontier (14). 	� ◻

Next proposition discusses the properties of the semi-analytical optimal policy 
of problem ((b)) and reveals the irrational feature of dynamic mean–variance 
criteria as we mentioned before. Recall that

where ui∗
t

 and �i∗
t

 are the optimal long and short positions in the i-th risky fund.

Proposition 2  At time t = 0, 1,… , T − 1 , if xt < 𝜌−1
t
(b − 𝜇∗) , the mean–variance 

investor would like to take either long or short position in each risky fund, i.e.,

At time t = 0, 1,… , T − 1 , if xt ≥ �−1
t
(b − �∗) , the mean–variance investor would 

like to take the same long and short positions in each risky fund, i.e.,

Proof  Denote

With the help of Theorem 2, the proposition can be proved by showing

Now, we prove ki+
t

= li+
t

 , i = 1, 2,… , n, t = 0, 1,… , T − 1 . Recall that at time t, 
the optimal parameter vector �+

t
 is the minimizer of

𝜇∗ = argmax
𝜇∈ℝ

{(
C0�{b−𝜇>𝜌0x0}

+ D0�{b−𝜇≤𝜌0x0}

)
(b − 𝜇 − 𝜌0x0)

2 − 𝜇2
}
.

(
�∗
t

�∗
t

)
= (u1∗

t
,… , un∗

t
, �1∗

t
,… , �n∗

t
)�,

ui∗
t
�i∗
t
= 0, i = 1, 2,… , n.

ui∗
t
= �i∗

t
, i = 1, 2,… , n.

�
+
t
= (k1+

t
,… , kn+

t
, l1+
t
,… , ln+

t
)�, �

−
t
= (k1−

t
,… , kn−

t
, l1−
t
,… , ln−

t
)�.

ki−
t
li−
t

= 0, i = 1, 2,… , n, t = 0, 1,… , T − 1,

ki+
t

= li+
t
, i = 1, 2,… , n, t = 0, 1,… , T − 1.

h+
t
(�t) = E

[
Ct+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t<−1}
+ Dt+1(1 + �̂

�
t
�t)

2
�{�̂�

t�t≥−1}

]
.
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As h+
t
(�t) is a sum of expectations of quadratic functions with non-negative coef-

ficients Ct+1 and Dt+1 , it suffices to observe that h+
t
(�t) ≥ 0 . When Ct+1 = Dt+1 = 0 , 

any feasible �t(≥ �2n) is the minimizer and we can choose a particular �+
t
 with 

ki+
t

= li+
t
(i = 1, 2,… , n) . When (Ct+1,Dt+1) ≠ (0, 0) , if there exists �t ≥ �2n such 

that �̂�
t
�t = −1 , then h+

t
(�t) = 0 . To construct such �t , we can impose ki+

t
= li+

t
 . 

Then we have

and one can easily find ki+
t

≥ 0 , i = 1,… , n satisfying �̂�
t
�t = −1.

To prove ki−
t
li−
t

= 0, i = 1, 2,… , n, t = 0, 1,… , T − 1 , we need the fact that 
Ct > 0 , Dt = 0 , t = 0, 1,… , T − 1 . Firstly, based on the above discussion on �+

t
 , we 

have h+
t
(�+

t
) = 0 , which implies

Secondly, we prove Ct > 0 , t = 0, 1,… , T − 1 by backward induction. At time T, 
CT = 1 > 0 . Now we assume Ct+1 > 0 . Consider the following inequality,

We show that the inequality (16) does not admit solution in the convex cone �t ≥ �2n 
by contradiction. Suppose that �∗

t
(≥ �2n) satisfies the inequality (16). Then, the 

investor can adopt the portfolio policy 
(
�t

�t

)
= �∗

t
 at time t to gain almost surely 

positive wealth level (at least 1) with zero initial wealth, i.e., 
xt+1(𝜔) = st ⋅ 0 + �̂�

t
(𝜔)�∗

t
≥ 1, ∀𝜔 ∈ 𝛺 . This is obviously an arbitrage opportu-

nity. Thus, the inequality (16) should NOT admit solution in the convex cone 
�t ≥ �2n , which further implies that the probability of event {�̂�

t
�t < 1} is positive, 

i.e.,

Therefore, noticing that Dt+1 = 0 , Ct+1 > 0 for t = 0, 1,… , T − 2 , DT = CT = 1 and 
Pr(�̂�

t
(𝜔)�t < 1) > 0 for t = 0, 1,… , T − 1 , we have

�̂
�
t
�t =

n∑
i=1

(−st)k
i+
t
(ci

t
+ di

t
),

Dt = min
�t≥�2n

h+
t
(�t) = h+

t
(�+

t
) = 0, t = 0, 1,… , T − 1.

(16)�̂
�
t
(𝜔)�t =

n∑
i=1

[Pi
t
(𝜔)(ki

t
− li

t
) − st(c

i
t
ki
t
+ di

t
li
t
)] ≥ 1, ∀𝜔 ∈ 𝛺.

Pr(�̂�
t
(𝜔)�t < 1) > 0.

Ct = min
�t≥�2n

E
[
Ct+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t<1}
+ Dt+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t≥1}

]

≥ min
�t≥�2n

E
[
Ct+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t<1}

]

> 0, t = 0, 1,… , T − 1.
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Furthermore, to prove ki−
t
li−
t

= 0, i = 1, 2,… , n, t = 0, 1,… , T − 1 , we also 
need the following equation, for t = 0, 1,… , T − 1,

According to the proof of Proposition 1, we have the following two equations,

which implies Eq. (17).
Finally, we prove ki−

t
li−
t

= 0 , i = 1, 2,… , n, t = 0, 1,… , T − 1 by con-
tradiction. Suppose that ki−

t
li−
t

≠ 0 . We can choose a positive number 
zt = min{ki−

t
, li−
t
, 2Cts

−1
t
(ci

t
+ di

t
)−1} , and define

with k̂i
t
= ki−

t
− zt , l̂it = li−

t
− zt . It is easy to compute that

For time t = 0, 1,… , T − 2 , we have Dt+1 = 0 , which implies

(17)E
[
Ct+1(1 − �̂

�
t
�

−
t
)�{�̂�

t�
−
t <1}

+ Dt+1(1 − �̂
�
t
�

−
t
)�{�̂�

t�
−
t ≥1}

]
= Ct.

(�−
t
)�E

[
(Ct+1�{�̂�

t�
−
t <1}

+ Dt+1�{�̂�
t�

−
t ≥1}

) ⋅ (�̂t�̂
�
t
�

−
t
− �̂t)

]
= 0,

E
[
(Ct+1�{�̂�

t�
−
t <1}

+ Dt+1�{�̂�
t�

−
t ≥1}

) ⋅ (1 − (�−
t
)��̂t�̂

�
t
�

−
t
)
]
= Ct,

�̂t = (k1−
t
,… , k̂i

t
,… , kn−

t
, l1−
t
,… , l̂i

t
,… , ln−

t
)� ≥ �2n

h−
t
(�̂t) =E

[
Ct+1(1 − �̂

�
t
�̂t)

2
�{�̂�

t�̂t<1}
+ Dt+1(1 − �̂

�
t
�̂t)

2
�{�̂�

t�̂t≥1}

]

=E
[
Ct+1(1 − �̂

�
t
�

−
t
− st(c

i
t
+ di

t
)zt)

2
�{�̂�

t�
−
t +st(c

i
t+d

i
t)zt<1}

+Dt+1(1 − �̂
�
t
�

−
t
− st(c

i
t
+ di

t
)zt)

2
�{�̂�

t�
−
t +st(c

i
t+d

i
t)zt≥1}

]
.

h−
t
(�̂t) = E

[
Ct+1(1 − �̂

�
t
�

−
t
− st(c

i
t
+ di

t
)zt)

2
�{�̂�

t�
−
t +st(c

i
t+d

i
t)zt<1}

]

< E
[
Ct+1(1 − �̂

�
t
�

−
t
− st(c

i
t
+ di

t
)zt)

2
�{�̂�

t�
−
t <1}

]

= E
[
Ct+1(1 − �̂

�
t
�

−
t
)2�{�̂�

t�
−
t <1}

]

− 2E
[
Ct+1(1 − �̂

�
t
�

−
t
)st(c

i
t
+ di

t
)zt�{�̂�

t�
−
t <1}

]

+ E
[
Ct+1s

2
t
(ci

t
+ di

t
)2z2

t
�{�̂�

t�
−
t <1}

]

= h−
t
(�−

t
) − 2Ctst(c

i
t
+ di

t
)zt + Ct+1E

[
�{�̂�

t�
−
t <1}

]
s2
t
(ci

t
+ di

t
)2z2

t

< h−
t
(�−

t
),



www.manaraa.com

	 X. Cui et al.

1 3

where {�̂�
t
�−

t
+ st(c

i
t
+ di

t
)zt < 1} ⊂ {�̂�

t
�−

t
< 1} is used to derive the first inequality, 

the equality (17) is used to derive the third equality, 0 < Ct+1 ≤ 1 , E[�{�̂�
t�

−
t <1}

] < 1 
and zt ≤ 2Cts

−1
t
(ci

t
+ di

t
)−1 are used to derive the last inequality. For time T − 1 , we have

where the equality (17) is used to derive the third equality and 
zT−1 ≤ 2CT−1s

−1
T−1

(ci
T−1

+ di
T−1

)−1 is used to derive the last inequality. Obviously, the 
derived inequality h−

t
(�̂t) < h−

t
(�−

t
) contradicts the assumption that �−

t
 is minimizer 

of h−
t
(�t) . Thus, we have ki−

t
li−
t

= 0 . 	�  ◻

Proposition 2 has revealed the irrational feature of dynamic mean–variance criteria. 
When the current wealth level is bigger than the threshold �−1

t
(b − �∗) , the mean–vari-

ance investor becomes irrational and tries to take both the same long position and short 
position in a single risky fund in order to reduce his total wealth. The reason behind 
the irrational behaviors is the non-monotonicity of the quadratic utility. Theorem  1 
has shown that the mean–variance criteria is equivalent to a particular quadratic utility 
maximization problem, and the axis of symmetry of the time t value function is just at 
the threshold. When the wealth level is bigger than the threshold, the more wealth level, 
the less utility. Thus, the best action is to reduce the wealth level xt to the threshold 
level �−1

t
(b − �∗) with certainty.

Before closing this section, we discuss the computation issue of the optimal parame-
ter vectors �±

t
 . As revealed in Theorem 2 and Proposition 1, finding the optimal param-

eter vectors �±
t
 plays a key role in identifying the optimal policy �∗

t
, �∗

t
 . For h±

t
(�t) 

defined in (9) and (12) are convex functions with respect to �t , the optimization prob-
lems in (5) and (6) are standard convex optimization problems, which try to minimize 
convex functions over a convex cone set. The theoretical analysis on these problems 
can be found in Section 27 of Rockafellar (1970) and the numerical methods suitable 
for these problems can be found in Chapter 2 of Bertsekas (1999). In the example of 
next section, we use the sequential quadratic programming algorithm embedded in 
Matlab function fmincon to derive the vectors �±

t
.

4 � Illustrative example

In this section, we use two illustrative examples to show the procedure of solving 
problem ((b)) , analyze how the management fee affects the investment perfor-
mance, and confirm the theoretical finding in Proposition 2.

h−
T−1

(�̂T−1)

= E[(1 − �̂
�
T−1

�
−
T−1

− sT−1(c
i
T−1

+ di
T−1

)zT−1)
2]

= E[(1 − �̂
�
T−1

�
−
T−1

)2] − 2E[(1 − �̂
�
T−1

�
−
T−1

)sT−1(c
i
T−1

+ di
T−1

)zT−1]

+ s2
T−1

(ci
T−1

+ di
T−1

)2z2
T−1

= h−
T−1

(�−
T−1

) − 2CT−1sT−1(c
i
T−1

+ di
T−1

)zT−1 + s2
T−1

(ci
T−1

+ di
T−1

)2z2
T−1

< h−
T−1

(�−
T−1

),
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Example 1  In this example, there are n = 10 funds, which are the first 10 indus-
try indices out of the 48 industry portfolios constructed by Fama and French.4 The 
expected monthly return vector and the covariance matrix of these 10 funds’ return 
are estimated by using the historical monthly return from Jan 1998 to Dec 2015,5 
which are given as follows,

The investment horizon is set as T = 3 months and the management fee rate of each 
fund is set as ci

t
= di

t
= � for t = 0, 1, 2 , i = 1, 2,… , 10 , where the parameter � is 

chosen from set {0, 0.001, 0.002, 0.003, 0.004} . The monthly return of the riskless 
bank account is set as st = 1.001 for t = 0, 1, 2.

The investor with initial wealth x0 = 1 adopts the mean–variance model ((b)) to 
decide his optimal portfolio policy. To solve the optimization problems (5) and (6), 
we adopt the Monte Carlo method to approximate the expected value in objective 
function. More specifically, in any time period, we assume the return vector �t fol-
lows multivariate normal distribution and generate N = 50,000 samples of �t accord-
ing to E[�t] and Cov[�t] . Then, we can get N samples of �t according to its definition, 
which are denoted as �t(i) , i = 1, 2,… ,N . Taking the objective function of (5) as an 
example, we can approximate it as,

Then, we call the function fmincon in MATLAB to solve the problem, where the 
sequential quadratic programming algorithm is adopted.

E[�t] = (1.0072, 1.0052, 1.0074, 1.0054, 1.0096, 1.0026, 1.0094, 1.0030, 1.0046, 1.0099)�,

Cov[�t]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0047, 0.0007, 0.0008, 0.0007, 0.0008, 0.0014, 0.0021, 0.0016, 0.0008, 0.0016

0.0007, 0.0015, 0.0012, 0.0010, 0.0012, 0.0011, 0.0014, 0.0010, 0.0009, 0.0012

0.0008, 0.0012, 0.0055, 0.0017, 0.0013, 0.0019, 0.0026, 0.0019, 0.0014, 0.0021

0.0007, 0.0010, 0.0017, 0.0022, 0.0010, 0.0011, 0.0013, 0.0009, 0.0011, 0.0011

0.0008, 0.0012, 0.0013, 0.0010, 0.0051, 0.0014, 0.0015, 0.0010, 0.0009, 0.0010

0.0014, 0.0011, 0.0019, 0.0011, 0.0014, 0.0043, 0.0034, 0.0022, 0.0014, 0.0028

0.0021, 0.0014, 0.0026, 0.0013, 0.0015, 0.0034, 0.0069, 0.0035, 0.0017, 0.0037

0.0016, 0.0010, 0.0019, 0.0009, 0.0010, 0.0022, 0.0035, 0.0037, 0.0013, 0.0026

0.0008, 0.0009, 0.0014, 0.0011, 0.0009, 0.0014, 0.0017, 0.0013, 0.0018, 0.0013

0.0016, 0.0012, 0.0021, 0.0011, 0.0010, 0.0028, 0.0037, 0.0026, 0.0013, 0.0042

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

E
[
Ct+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t<1}
+ Dt+1(1 − �̂

�
t
�t)

2
�{�̂�

t�t≥1}

]

≈
1

N

N∑
i=1

(
Ct+1(1 − (�t(i))

�
�t)

2
�{(�t(i))

��t<1}

+Dt+1(1 − (�t(i))
�
�t)

2
�{(�t(i))

��t≥1}

)
.

4  The data of 48 industry portfolios can be found in http://mba.tuck.dartm​outh.edu/pages​/facul​ty/ken.
frenc​h/data_libra​ry.html.
5  To achieve a stable estimation, the shrinkage estimation method in Ledoit and Wolf (2003) is used in 
estimating the covariance matrix.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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For different level of management fee rate, � ∈ {0, 0.001,… , 0.004} , we derive 
the optimal parameter vectors �±

t
 and the solution parameters Ct and Dt , t = 0, 1, 2 , 

which are used to computed the mean–variance efficient frontier. The optimal 
parameter vectors �±

t
 and Ct , Dt at time t = 2 for � = 0.001, 0.002, 0.003, 0.004 are 

reported as follows,

These results confirm the findings of Proposition 2. Moreover, we can see that when 
the management fee rate increases, the optimal parameter vectors �±

t
 decrease and 

the parameter Ct increases.
In Fig. 1, we present the influence of difference levels of management fees on the 

mean–variance efficient frontier of the terminal wealth. As we can see from Fig. 1, 
for a given level of variance, the expected terminal wealth decreases when the 
management fee rate increases. Moreover, the Sharpe ratio of the efficient frontier 

C2|{�=0.001} = 0.9645, C2|{�=0.002} = 0.9782,

C2|{�=0.003} = 0.9858, C2|{�=0.004} = 0.9903,

D2|{�=0.001} = D2|{�=0.002} = D2|{�=0.003} = D2|{�=0.004} = 0.0000,

�
+
2
|{�=0.001}
= (47.005, 46.050, 45.914, 46.143, 51.338, 58.554, 46.293, 49.263, 45.861, 63.081,

47.005, 46.050, 45.914, 46.143, 51.338, 58.554, 46.293, 49.263, 45.861, 63.081)�,

�
+
2
|{�=0.002}
= (24.685, 24.506, 24.518, 24.526, 25.479, 26.692, 24.582, 24.888, 24.465, 25.415,

24.685, 24.506, 24.518, 24.526, 25.479, 26.692, 24.582, 24.888, 24.465, 25.415)�,

�
+
2
|{�=0.003}
= (16.600, 16.544, 16.565, 16.550, 16.781, 16.965, 16.599, 16.613, 16.531, 16.752,

16.600, 16.544, 16.565, 16.550, 16.781, 16.965, 16.599, 16.613, 16.531, 16.752)�,

�
+
2
|{�=0.004}
= (12.479, 12.452, 12.468, 12.455, 12.547, 12.534, 12.489, 12.463, 12.446, 12.543,

12.479, 12.452, 12.468, 12.455, 12.547, 12.534, 12.489, 12.463, 12.446, 12.543)�,

�
−
2
|{�=0.001}
= (0.735, 0.005, 0.274, 0.431, 1.284, 0.000, 0.572, 0.000, 0.293, 2.479,

0.000, 0.000, 0.000, 0.000, 0.000, 1.888, 0.000, 1.184, 0.000, 0.000)�,

�
−
2
|{�=0.002}
= (0.460, 0.000, 0.156, 0.165, 1.126, 0.000, 0.124, 0.000, 0.000, 1.864,

0.000, 0.000, 0.000, 0.000, 0.000, 1.099, 0.000, 0.129, 0.000, 0.000)�,

�
−
2
|{�=0.003}
= (0.254, 0.000, 0.032, 0.001, 0.930, 0.000, 0.001, 0.000, 0.000, 1.372,

0.000, 0.000, 0.000, 0.000, 0.000, 0.303, 0.000, 0.000, 0.000, 0.000)�,

�
−
2
|{�=0.004}
= (0.084, 0.000, 0.000, 0.000, 0.754, 0.000, 0.000, 0.000, 0.000, 1.064,

0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)�.
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nonlinearly decreases with respect to the management fee rate, as revealed by the 
solid line in Fig. 2.

Now we focus on analyzing the benefit and cost of conducting dynamic portfolio 
policy with management fees. The benchmark is that the investor directly invests 
in the stocks instead of funds and adopts buy-and-hold policy. More specifically, 
the investor regards the three-month investment model as a single period MV port-
folio model and invests the risky funds without management fees by duplicating 
the funds’ portfolios. It is not hard to compute the Sharpe ratio by adopting such a 
buy-and-hold static MV portfolio policy as 0.4143 (see Markowitz 1952). When the 
investor adopts a dynamic portfolio policy with management fees for three months, 
i.e., the investor considers the portfolio model ((b)) . According to Theorem 2, the 
optimal Sharpe ratio of the terminal wealth is given as

In Fig. 2, the dash line represents the benchmark of the Sharpe ratio achieved by the 
buy-and-hold static MV portfolio policy, in which no management fees are charged 
and the solid line represents the Sharpe ratio achieved by the dynamic MV portfo-
lio policy (13) with different levels of management fee rate. When the Sharpe ratio 
achieved by the dynamic policy is higher than the benchmark (the dash line), it is 
worth for the investor to adopt dynamic portfolio policy with management fees. Oth-
erwise, it is better for the investor to adopt the buy-and-hold policy himself. For this 
particular numerical example, when the management fee rate is less than 0.048% 

E[x3] − �0x0√
Var[x3]

=

�
1 − C0

C0

.

V ar[xt]

0 0.05 0.1 0.15 0.2

E
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T
]

1

1.01
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1.06

1.07

1.08
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ct = dt = 0
ct = dt = 0.001
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ct = dt = 0.003
ct = dt = 0.004

Fig. 1   The efficient frontiers for different levels of management fees
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(fee rate per month), the investor would be better off by adopting dynamic portfolio 
policy with management fees.

5 � Conclusion

Motivated by the fact that some individual investors prefer to invest in funds 
instead of stocks, this work studies the multi-period MV portfolio optimization 
problem with proportional management fees. Under general market setting, we 
derived the semi-analytical optimal portfolio policy for this problem. Meanwhile 
the numerical approach is given to compute such optimal portfolio policy. Differ-
ent from the traditional multi-period MV portfolio policy (see Li and Ng 2000), 
the revealed portfolio policy is a piecewise affine function with respect to the cur-
rent wealth. Our model has certain potential to be calibrated by the real market 
data and used in the empirical tests in the future research related to management 
fees.

Funding  This research was partially supported by National Natural Science Foundation of China under 
Grants 71671106, 71601107, by the State Key Program in the Major Research Plan of National Natural 
Science Foundation of China under Grant 91546202.
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